
THE POWER
OF VIM

IN MODERN
IDES

by Sergey Kudashev

ACKNOWLEDGMENTS

- a full-stack developer with
 a wide range of interests
- passionate about craft
- a constant learner
- an open-source contributor

ABOUT ME

@kudashevs

www.kudashevs.com

- Vim philosophy
- Vim language
- Commands
- Motions
- Objects
- Ex-commands
- Search
- Marks

AGENDA

I don’t want to convince anyone that Vim is the
best tool ever.

My goal is to show a way how the things can be
done, to show the specific approach that Vim
provides and spark your interest to the tool.
If you adopt even one of the ideas that I will
show next, I will be glad and delighted.

DISCLAIMER

- treats editing text as the primary action
 (usually inserting is the primary action)
- less keystrokes as possible
- mouseless and arrowless development
- intuitive operators and commands
- composition of operators/motions/objects
- always a way to repeat something
- always a way to undo something
- always a better/shorter way

PHILOSOPHY

The main modes are:
- normal-mode,
- insert-mode,
- visual-mode,
- command-line-mode

* keystrokes mean different things depending on
what mode you are in.

MODAL EDITING

The Vim language includes:
- operators/commands,
- motions,
- ex-commands,
- extra

VIM LANGUAGE

u - undo
<C-r> - redo
U - restore line

Text entry commands:
a - append text following current cursor position
A - append text to the end of current line
i - insert text before the current cursor position
I - insert text at the beginning of the cursor line
o - open up a new line following the current line
O - open up a new line in front of the current line

* think of commands as verbs/operators

COMMANDS

p - paste below cursor
P - paste above cursor

c - change <something>
C - change to the end of the line
d - delete <something>
D - delete till the end of line
r - replace character
R - replace mode
s - substitute character
S - replace a whole line
x - delete character
X - delete previous character (backspace)

COMMANDS

y - yank <something>
Y - yank a whole line
> - indent right
< - indent left
= - auto-indent
v - select <something>
V - select a whole line (line mode)

J - join next line down to the end of the line

COMMANDS

s - is same as xi (the power of composition)

yy - copy a line
dd - delete a line
xp - swap two letters

. - repeat the last command

COMBINATIONS

The basic motions are:
h - moves the cursor one character to the left
j - moves the cursor down one line
k - moves the cursor up one line
l - moves the cursor one character to the right

* but we don’t want the basic motions only

MOTIONS

gg - move to the beginning of the file
G - move to the end of the file
<num>gg/G - move to a line number (ex-command also)

{ - jump to previous paragraph
} - jump to next paragraph
{[- jump to previous unmatched {
}] - jump to next unmatched }
[m - jump to previous method
]m - jump to next method
% - jump to corresponding parentheses (objects)

MOTIONS (INSIDE FILE)

0 - start of a line
$ - end of a line
^ - first non-blank character
g_ - last non-blank character (g is a magic key)

w - one word forward
W - one WORD forward
b - one word backward
B - one WORD backward
e - end of a current word
ge - end of a previous word (g is a magic key)

MOTIONS (INSIDE LINE)

f - go forward to <something>
F - go backward to <something>
t - go forward till <something>
T - go backward till <something>

; - repeat last f/t motion
, - repeat in a reverse order

MOTIONS (INSIDE LINE)

(or), [or], { or }, < or > - for matching pairs
",',` - for matching pairs of quotes
p - paragraph
s - sentence
b - block
t - tag

i - inner object
a - outer object

* but we don’t want basics only

OBJECTS

* not the magic, but the power of composition

[count][operator][text object/motion]

3dw - delete 3 words [count][operator][motion]
cit - change inside a tag [operator][object]
va{V - select a block [operator][object][operator]
d2at - remove two tags [operator][count][object]

COMPOSITION

: for entering the world of ex-commands

:h <smth> - to get help
:q - exit a document
:q! - exit without saving
:w - write a document
:wq - write and exit

:h(elp) set

EX-COMMANDS

/<smth> - search for something forward
?<smth> - search for something backward
n/N - repeat last search <times>

* - search forward for the word under the cursor
- search backward for the word under the cursor

SEARCH

:marks

m<char> - set mark
'<char> - go to the mark (line)
`<char> - go to the exact position
`. - last change occurred in the current buffer

:jumplist
`" - last exited the current buffer
`0 - last file edited (previous edit point)
'' - jump back to the line
`` - jump back to the position

MARKS

 IdeaVim for IntelliJ products.

 vscodevim for VSCode.

IN IDEAS

argtextobject adds an argument text-object
indent-object adds an indent text-object
surround adds the possibility to wrap objects

easymotion simplifies some motions

PLUGINS

vimtutor - a program that teaches you the basics

Training sites:
https://vim-adventures.com/
https://openvim.com/

Documentation:
https://vimhelp.org/
https://ideavim.sourceforge.net/vim/index.html

NEXT STEPS

Start with the vimtutor. Then, try to use Vim for some simple
tasks. When you’re comfortable with the presented ideas and

the tool, try to integrate it into your workflow.

CONCLUSION

THANK
YOU

